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MULTIPERIOD NETWORK IMPROVEMENT MODEL

CHIEN-HUNG WEI AND PAUL SCHONFELD1

As traffic demand increases over time, improvements to existing transportation networks must be
considered for enhancing efficiency, capacity or both.  Because of limited resources even
justifiable projects may have to be implemented gradually.  The selection and timing of
improvement projects are very important to ensure the most cost-effective investment plan. 
Conducting this task for transportation network is particularly challenging since the project
effects tend to be inherently interdependent.  By inadequately estimating project impacts during
intermediate periods most existing methods tend to generate inappropriate improvement plans. 
The study developed a multiperiod network design problem model for the dynamic investment
problem.  A branch-and-bound algorithm was designed to determine the best project
combinations and schedules.  An artificial neural network model was used for estimating
multiperiod user costs.  The proposed model can efficiently handle the interdependencies among
projects and demand change in each period.  This method can be used for programming various
transportation network improvements or transformations.

Investing in transportation systems to accommodate the increasing demand over time is one of
the major issues for public agencies.  Because of resource and other physical limitations,
selecting the optimal project combination and implementation timing is very important for such
programs.  This problem is particularly challenging since most network projects arc highly
interdependent.

Evaluating the interrelations among projects of interest is often a critical issue for investment
decisions.  Several researchers have sought to derive appropriate expressions for various
interrelations among projects.  However their efforts have not yielded significant breakthroughs. 
Neither of these results is satisfactory in transportation networks where projects tend to affect
each other.  The network effects that cause such interrelations cannot be examined by simple
analytical models.  Therefore the interdependent terms will not be estimated for any project
combinations in this paper.  Instead the differences between various aggregate effects will be
computed and used for comparing the effectiveness of various project combinations.

Existing methods tend to ignore the intermediate period conditions and hence may lead to
inappropriate solutions.  Since traffic demand may not increase smoothly over time and
throughout the entire network, we should consider the effects of demand changes on
networkwide operations.  Even when the demand increases smoothly the resulting network
equilibrium could be significantly different in each period because of motorist route choice
behavior and the changing set of projects already implemented.  Hence explicit consideration of
intermediate-period conditions is essential in economic evaluations.
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It may be realized through the above discussions that the most suitable timing of various
improvements is really dependent on many factors.  Therefore a model for the multiperiod
network design problem (MPNDP) is developed for programming transportation network
improvements.  This model includes the desirable features of simultaneously determining the
best combination of projects and schedules.

LITERATURE REVIEW

Although a number of project selection studies have been made it seems that relatively little
effort has been devoted to assessing interactions among projects (1).  Researchers typically deal
with simple interrelations [e.g., see the papers by Fox et al. (2) and Gomes (3)] or assume that
such information is exogenously provided [e.g., see the paper by Carraway and Schmidt (4)].

Hall and Nauda (1) provided a taxonomy that characterizes various approaches to research and
development project selection.  A common situation is that such methods generate a preferred
subset of projects without considering implementation timing.

The problem of sequencing capacity expansion projects (SCEPS) is one of the most widely
studied in the project sequencing literature (5,6).  It is quantitatively based, requires specific
information on demand, and yields decisions on the preferred projects and the corresponding
sequence and timing.  However SCEP and most other sequencing models cannot efficiently
handle highly interdependent network effects.

The network design problem (NDP) approach has been applied to many network-related
problems [e.g., see the papers by LeBlanc (7), Magnanti and Wong (8), and Janson et al. (9)]. 
The NDP model can consider the systemwide interactions among design decisions and analyze
how design decisions affect the operations of a transportation network.  However most existing
NDP models arc useful only for one-period decision making (i.e., project selection).  The time
dimension must be added to make NDP models suitable for project scheduling.

Akileswaran et al. (10) and Johnson et al. (11) have shown that SCEP and NDP models are fairly
complex.  Hence many researchers have used various heuristic solution methods [e.g.,
Poorzahedy and Turnquist (12)].  The most common difficulty encountered in any model is
evaluation of network performance with respect to various changes.  For a transportation network
the traffic assignment model is frequently used to estimate the resulting total travel time.  The
computation time is quite large even for a network of moderate size.

The artificial neural network (ANN) has been studied as an alternative method for evaluating
static network effects (13).  When a time dimension is incorporated the ANN is shown to be an
efficient prediction model for generating the multiperiod total travel times for any network
changes (14).  However it seems that applications of ANNs to transportation problems are just
beginning (15).  To date ANN research or practical applications in transportation engineering are
still rare, although they are increasingly popular.

MPNDP MODEL
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Given a transportation network and a set of improvement projects we try to find the optimal
combination and schedule of projects that minimize the total discounted cost subject to relevant
constraints.  This is an MPNDP.  We consider a planning horizon consisting of several equal
discrete time periods (e.g., 1 year) and currently focus on capacity expansion of links (i.e., adding
or improving a link).

The MPNDP model has the following features:

1. Both user and incremental supplier costs are considered in the objective function,
2. Periodic budgets are the only resource for construction, and the unspent portion may be

rolled over into succeeding periods,
3. Project continuity is preserved, and
4. The resulting capacity changes in each period are specifically considered.

It is assumed that uncertainties about traffic demands and project costs may be disregarded (8). 
Only incremental supplier costs with respect to the null (i.e., existing) network will be counted. 
In this paper the projects are treated as immediately available to motorists in the first periods they
are implemented.  Another model considering project construction and possible traffic disruption
has been proposed elsewhere (16).  The solution framework discussed in the next section may be
employed with a slightly different interpretation.  However the computational burden would
increase.

The following notation is used to present a mathematical formulation of the MPNDP model:

A = set of links;
Bh = budget for projects in period h;
Cah = project cost of link a in period h, a ε P;
CRFrτ = capital recovery factor for discount rate r and τ periods;
H = planning horizon;
Ka = initial capacity of link a, a ε A;
Kah = capacity of link a in period h, a ε A;
MANah = maintenance cost of link a in period h, a E P;
N = set of nodes;
P(P') = set of links with (without) projects, P' = A - P;
PVFrh = present value factor for discount rate r in period h;
Sh = unspent budget in period h; S0 = 0;
X = flow patterns on each link, = (Xah) for a ε A and h ε H;
r = discount rate;
xah = flow assigned on link a in period h; a ε A and h ε H
αa, βa = parameters of the travel time function on link a, a ε A;
∆ka = proposed additional capacity on link a, a ε P;
ψ = unit cost of user travel time;
µa = travel time at zero flow on link a, a ε A; and
πa = capital cost of link a, a ε P.

Assume m projects and τ periods are considered.  Let V equal vah be the m × τ decision matrix for
a = 1, . . . , m, and h = 1,. . . τ. Each element in V is defined as follows:



209

vah �
�
�
�

1   if project on link  is in service in period 
0 otherwise

a h

v v a P h Hah a h� � � �
�, ,1 (1)

t x v x Kah ah ah a a ah ah
a( , ) [ ( / ) ]� �� �

�1 (2)

K K v K a P h Hah a ah a� � � � �� , (3)

K K a P h Hah a� � � �' , (4)

C CRF MAN PVF a P h Hah a r ah rh� � � � ��
�

, (5)

Each matrix V represents a particular investment plan that specifies the preferred projects and
implementation times.  To preserve project continuity we require

For example if link a is to be improved in period 3, then the corresponding solution for link a
would be va1 = va2 = 0 and va3 = va4 =. . .= vaτ = 1.  By thus defining decision variables capacity
changes in each time period can be properly incorporated.  Hence the corresponding average
travel times can be accurately computed for the improved links.  This new idea is presented here
to reflect the effects of each improvement project.

The average travel time on link a in period h depends on project implementation and equilibrium
flow.  It is computed by

where

By setting suitable initial link capacities both the link-adding and link-improving options can be
handled simply by Equation 3. The initial capacity Ka may be assumed to be arbitrarily small for
any possible new link, so that one unit flow will result in an extremely long travel time on this
link.  Therefore no traffic will be assigned to a yet nonexistent link.  For existing links Ka is equal
to its current physical capacity.  Once this link is added or improved the second term on the right-
hand side will ensure the addition of new capacity to the network.  Then appropriate traffic
volumes may be assigned accordingly.

The periodic project cost on link a is computed by converting the capital cost to a periodic
expenditure plus a maintenance cost in each period.  Hence,
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where

In principle the periodic maintenance cost may depend on the age or utilization rate of the facility
as discussed by Markow (17) and Fwa et al. (18).  However practically reliable results are still
underdeveloped (19).  Hence MANah is assumed to be a fixed fraction of the project capital cost
in the present study.

The system cost is defined for each period as the sum of user travel time costs and project costs:

It is clear that the system cost depends not only on the project implementation decisions but also
on the traffic flows on each link.  Furthermore the flow patterns will be updated according to the
projects selected up to the current period.  There seems to exist a hierarchy for this problem.  A
higher-level position for the decisions on projects seems appropriate.  Given the decision vari-
ables vah the equilibrium flow assignment may be processed at the lower level.  Consequently
MPNDP is expressed by two subproblems at different levels.

We now define the solution set fl for MPNDP as

A total number of (τ + 1)m possible solutions is included in Ω for the corresponding MPNDP.

The MPNDP consists of two parts, namely the network priority program problem (NPPP) in the
upper level and the periodic network equilibrium problem (PNEP) in the lower level.  The NPPP
is formulated below as a nonlinear mixed-integer program subject to constraints representing
periodic funds available and project continuity.  The NPPP formulation is:
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In Equation 10 x*
ah is the optimal solution of the following network equilibrium problem in

period h for any given feasible decision matrix V.

The PNEP formulation is:

subject to

where

Krsh = set of paths connecting origin-destination (O-D) pair r-s in period h, for r,s ε Rh;
Rh = set of origins and destinations in period h, Rh  N;�

frs
kh = flow on path k connecting O-D pair r-s in period h; 

qrsh = trip rate between O-D pair r-s in period h; and 
δrs

akh = 1 if link a is on path k between O-D pair r-s in period h and 0 otherwise.

The bilevel structure of the MPNDP model is similar to those presented by LeBlanc and Boyce
(20) and Bard (21).  However the proposed model is more realistic since the improvements are
considered for the different demands and corresponding user behaviors in each period throughout
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the planning horizon.  On the other hand this model is considerably more difficult to solve be-
cause of the extensive and complex interactions between users and planners.

SOLUTION METHOD

Considering the project continuity constraint there are only τ + 1 possible decisions for each row
(i.e., for each individual project) in the decision matrix.  These cases may be represented by
summing up the values of decision variables in the same row.  Hence only a row sum variable va
is needed for any possible implementation of project a. Consequently the row sum vector may be
appropriately constructed with the following definition to replace the decision matrix V:

In Equation 19 T stands for the transpose of a vector.

The row sum variable is a convenient representation since each value corresponds to a decision
on project selection and scheduling.  Then we may modify Equation 9 as

Note that with Equations 19 through 21 all elements in the set Ω already implicitly fulfill the
project continuity constraint.  Hence only the budget constraint remains to be satisfied in the
solution procedure.

It has been shown that an efficient project sequence is quite helpful in the solution process [e.g.,
Erlenkotter (22), Janson and Husaini (23), and Martinelli (24)].  It is usually obtained by ranking
the relative effects of projects on the system.  A good initial project sequence can speed up the
proposed solution method.  The initialization criterion used here is the saving/cost ratio of each
individual project.

To solve the MPNDP a branch-and-bound (BB) procedure along with an ANN model is
developed.  The proposed procedure can cost-effectively evaluate the resulting system cost for
each solution considered and screen inferior solutions to quickly obtain the optimal solution.

ANN Model

The motivation and justification of using the ANN approach is its small predictive error as well
as its reasonable computational burden.  In particular when only the total travel time in a
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transportation network is needed a relatively simple ANN model may serve as a proxy for the
conventional traffic assignment model (14).  However several specific choices must be made for
the training parameters.

The ANN model is constructed to compute the system equilibrium (SE) user travel times, taking
into consideration the effects of project selection, scheduling, and different demands over time. 
The desirable feature of the ANN approach is that, after the ANN is trained, it may be repeatedly
used for any analysis on the MPNDP, in which each replication requires very little computation
time.  The ANN approach is especially suitable for relatively large transportation networks in
which long computation times are usually required for traffic assignments.  Some relevant
discussion and validation are provided by Wei (16).

BB Procedure

Considering various factors in the transportation network improvement problem, a preliminary
conclusion is that lower total system costs tend to be associated with the earlier implementation
of projects.  Hence the objective function of NPPP is roughly a U-shaped curve skewing to
smaller values of row sum variables.  This property is particularly important on capacitated
networks where congestion effects increase user travel time exponentially.  The proposed BB
method is mainly based on this observation, and detailed discussions may be found in Wei (16).

With the initial project sequence a synthesized branch rule is developed and the ANN model is
activated whenever a lower bound (LB) is needed in the solution process.  The conventional
traffic assignment is used to estimate the user equilibrium (UE) user travel times for each
complete solution.  On the basis of the branch rule the proposed BB method would generate a
tree with as many levels as the number of row sum variables (i.e., number of projects).  Hence
the level index L is also used as the project index.

To monitor the progress of the BB method a list containing the branch indexes in descending
order is needed.  Information about the new branch is added to the top of the branch index list. 
Each branch index is associated with a partial solution or a complete solution when the level
index is equal to m. In any case the branch with the largest index is at the top of the list and will
be processed first.  As a general rule the indexes of branches from the same predecessor should
be labeled in the reverse order of the assigned values for the variables under current
consideration.  The branch index and associated information will be removed from the list after
further partitioning or fathoming is accomplished. 

The core of the proposed BB method is to choose the best possible solution (BPS) for each
branch, given the decision on already specified projects.  Since each branch represents a number
of possible solutions, the intelligently derived BPS would sufficiently reflect the goodness of the
associated solutions.  Such a task is accomplished by estimating and updating the earliest im-
plementation times (EITS) of all unspecified projects.

T'he EIT of project a, ha, is the smallest time index in which project a may be implemented
without violating the relevant constraints as well as the schedule of already specified projects. 
For each partial solution updating of EITs is equivalent to choosing the smallest values for free
row sum variables according to the fixed values of other variables.  The proposed procedure is
described below.
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At level 0 (i.e., root of the BB tree) the EITs of all projects are verified by 

For partial solutions at level L > 0 the first L projects have been specified to have fixed values. 
The remaining m-L variables are free, and their updated EITs corresponding to those fixed

variables must be decided.  The largest value among the already specified variables is identified
by

v'L indicates the last period for accumulating available budget.  When v'L is zero the projects
specified so far are not to be implemented and the budget is not used at all.  Thus the EITs of the
free variables are set equal to h'a, obtained in Equation 22.  For nonzero v'L the remaining budget
is then obtained by subtracting the construction costs of the already implemented projects.

The appropriate EITs for free variables are determined by one of the following conditions:

1. If the remaining budget is larger than any construction cost of the free projects, the
prevailing unspecified projects may be also implemented before period v'L without
exceeding the budget limit.  Thus when Equation 24 holds for any free project the cor-
responding EIT is set equal to the EIT obtained in its predecessor node.

2. Otherwise the EIT of free project i is obtained by

Note that the EIT of each unspecified project obtained is thus based on the budget relaxation
proposed by Wei (16).  This is to ensure the feasibility of already chosen projects and the
achievement of lower costs from all unselected projects.  Thus the greatest contribution that each
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project may yield to the system is obtained on the basis of the currently established network. 
Such budget relaxation is also desirable to reduce the problem complexity since the not yet
considered projects will compete for the remaining budget.  As a result the complete solutions in
the BB tree are always budget feasible.

With the above treatments new branches can be created rapidly and more partial solutions can be
examined for their system effectiveness.  Since the ANN model is fairly efficient the lower
bound is quite tight and the overall solution process is very fast.

Algorithmic Procedures

The complete solution algorithm for the MPNDP is condensed as follows:

Step 0: Preprocess.  Presort projects according to their relative system effectiveness and assign
the project index in that order.

Step 1: ANN Training.  Train the ANN by using the methods discussed by Wei (16).
Step 2: Initialization.

a.. Set L equal to 0.
b. Compute initial upper bound (UB) equal to ZUE under the current network configuration.
c. Compute the EITs at level L for all projects by using Equation 22.

Step 3: Branching.
a. Set L equal to L + 1.
b. First, for L < m partition vL according to the updated EIT, assign branch indexes, generate

partial solutions, and put this information on the branch index list.  Second, for L equal
to m partition vm according to the updated EIT, assign branch indexes, generate complete
solutions, and put this information on the branch index list.

Step 4: Bound Computation.
a. Pick the first branch and the associated partial solution from the list revised in Step 3.
b. If L is equal to m go to Task A. Otherwise obtain the updated EITs for free variables by

using Equation 24 or 25, estimate the SE total travel time for the corresponding BPS with
the trained ANN, and compute the LB.

Step 5: Comparison.
a. For LB greater than or equal to UB fathom this solution and go to Task B.
b. For LB less than UB go to Step 3 if L is less than m; otherwise store this incumbent

solution, set UB equal to LB, and go to Task B.

Task A: Computing ZUE for Complete Solutions.  For the complete solution perform UE traffic
assignment and compute ZUE under the current project schedule.  Set LB equal to ZUE and
go to Step 5.

Task B: Checking the Branch Index List
a. For L equal to 1:

! If there is no branch at the same level, stop the BB process; the latest incumbent
solution is the optimal solution.

! Otherwise go to Step 4.
b. For L greater than 1:

! If there is no branch at level L go to level L - 1.



216

! If there is no branch at level L - 1, set L equal to L - 1 and go to Task B; otherwise
set L equal to L - 1 and go to Step 4.

!- Otherwise go to Step 4.

For a three-project, 5-year case discussed by Wei (16) the BB solution process is shown in Figure
1. Note that because of the relatively small problem size the total costs of possible solutions are quite
close.  Hence quite a few complete solutions are evaluated at the lowest level.  As shown in the next
section the proposed solution method is very efficient and only a few complete solutions need to be
evaluated when a practical problem size is considered.

NUMERICAL EXAMPLE

A realistic problem is used in this section for demonstrating the solution method proposed for the
MPNDP model.  The relevant information was provided by the Maryland State Highway Ad-
ministration for a related study (25).  The characteristics of this illustrative problem are practical
enough that it can be used to validate the usefulness of the proposed methodology for real-world
problems.

To alleviate future congestion in Calvert County, Md., five projects are considered, as shown in
Figure 2. Projects X, Y, and Z add one more traffic lane to the associated links in each direction.
Alternatively projects P and Q provide bypass routes for most of the congested areas.  The bypass
routes are assumed to be two-lane, two-way highways.
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These five projects, if all are completed, would greatly relieve future traffic congestion.  However
this is hardly possible because of limited funds.  In addition since two parallel routes exist for most
of the congested areas the project effects tend to overlap.  Hence installing two parallel projects
simultaneously is unlikely to be efficient.

Projects are considered for a 12-year planning horizon, from the years 1999 to 2010.  All cost and
saving computations will be based on the resent value in the year 1999.  The primary factors used
for these computations are listed in Table 1. According to Equation 21 there are 135 (371,293)
possible combinations of projects and schedules to be evaluated, which is not a trivial task.

TABLE 1 Parameters Used for Methodology Demonstration

Item Value
Unit Value of Time ($/Veh-hour) 10.0
Peak Hour to Day Ratio 0.15
Day to Year Ratio 1/300
Planning Horizon (Years) 12
Interest Rate (%) 6
New Construction Cost (Million $/Lane mile) 4.5
Roadway Widening Cost (Million $/Line mile) 3.0
Ratio of Overhead and Other Costs to Construction Cost 20
Annual Maintenance to Construction Cost Ratio 1.55

To set up an MPNDP for this case a number of preliminary analyses are conducted.  Without
improvements it is found that the overall average speed is reduced from 38.25 mph in the year 1999
to 20.86 mph in the year 2010.  Hence significant improvements on this highway system are
desirable to preserve a reasonable level of service.  The effects and capital costs of each individual
project are listed in Table 2. The last column in Table 2 shows the cost-effectiveness rank of each
individual project and constitutes the solution of many scheduling methods.

Table 2 also provides some information about project combinations.  In particular the total user
travel time is almost halved and the average travel speed is almost preserved at the year 1999 level
if all projects are implemented.  Nevertheless the corresponding travel time savings are notably less
than the sum of individual ones.  This explicitly indicates the interdependencies among various
projects.

According to the factors listed in Table 1 the total cost of the null system is $2,371 million.
Assuming that the available budget is $15 million/year, this test problem is solved with a trained
ANN and the proposed BB method.  The solution process takes only a few seconds of central
processing unit time on a 486-based personal computer.  The optimal scheduling solution for (P, X,
Y, Z, Q) is (3, 11, 5, 5, 13), with a total cost $1,743 million.  The costly project Q is not considered
for implementation, although its time savings is among the highest.  The system cost savings that
would result from this implementation plan are $628 million (or 26 percent of the null alternative)
for the 12-year planning horizon.
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It is helpful to justify the usefulness of the proposed methodology by comparing its results with those
of the scheduling decision obtained on the basis of independent project effects.  The approach is to
use the independent sequence shown in Table 2 and to determine the project implementation times
that lead to the minimum total cost.  Given the same conditions discussed above the optimal
scheduling solution is (3, 4, 7, 11, 13) and has a total cost $1,841 million.  It is clear that a better
solution, with $98 million of additional savings, is found by considering project interdependencies.

TABLE 2 Project Effects and Ranking in Year 2010

Project Length
miles

Project
Cost1 (A)

Total
UTT2

Speed3

MPH
UTT Saving

(B)
B/A
Ratio

Null - - 15500 20.86 - -
p 5.40 29.2 12242 26.32 3258 112
x 5.98 21.5 13621 23.69 1879 87
y 10.27 37.0 12359 26.07 3141 85
z 8.38 30.2 13937 23.26 1563 52
Q 12.88 69.6 12351 26.02 3149 45

Combination
XYZ 24.63 88.7 9000 35.73 6500 73
PQ 18.28 98.8 10956 28.99 4544 46

ALL 42.91 187.5 8521 36.82 6979 37
1Million dollars
2User equilibrium travel time, veh-hours/peak-hour 
3Average peak hour speed at network level, miles/hour

The effects of various budget levels are analyzed.  The approach is to restrict the annual budget so
that the present value of total budgets is a certain fraction of the total project costs.  Six budget
levels, from 50 to 100 percent of total project costs, are considered, and the results are shown in
Table 3. It is interesting to note that optimal solutions for different budget levels yield similar
improvement effects over the null system, as shown in the last column of Table 3. However the
optimal scheduling solutions and the corresponding total system costs are quite different.

It is found that for lower budget levels (e.g., 50 and 60 percent) improvements on existing links are
preferred since the associated costs are usually lower.  The new bypass routes are either deferred or
not considered for installation.  If, however, the budget is insufficient (e.g., 70 percent or higher) new
links may be added in the early stages.

Table 3 also provides information on the processes of the proposed BB method, that is, the numbers
of nodes created and the numbers of feasible solutions evaluated.  Since the nodes represent both
partial and complete solutions generated throughout the solution procedure, this information
indicates that the proposed BB method is fairly effective.  The infeasible or inferior solutions are
screened out efficiently because of the specially designed branching and bounding rules.  Only a
small fraction of possible solutions must be evaluated.  This demonstrates the highly desirable
property addressed in the previous section.  Additionally the information about BB nodes seems to
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indicate that the proposed method is best suited for budget levels of between 80 and 100 percent of
total project costs.

TABLE 3 Results for Various Budget Levels

Budget
Level1

Annual
Budget

BB
Nodes2

# Feasible
Solutions

Optimal
Solution

Total
Cost

Improvement
Over Null3

50% 10.5 463 9 (11,3,4,13,13) 1722 27%
60% 12.5 565 7 (10,2,4,13,13) 1687 29%
70% 15.0 120 4 (3,11,5,5,13) 1743 26%
80% 17.0 75 3 (8,2,3,9,13) 1726 27%
90% 19.0 49 2 (2,3,8,5,13) 1729 27%
100% 21.1 42 2 (2,3,5,7,13) 1747 26%
1Total project cost = 187.5
2Nodes created in the branch-and-bound solution process
3Total cost of null alternative = 2371

POTENTIAL APPLICATIONS

The MPNDP model and solution method proposed in this paper is especially designed for
prioritizing interrelated projects in transportation networks.  Below several potential applications of
the proposed MPNDP model are discussed.

Application in Highway Maintenance Planning

Conventional highway maintenance planning tends to neglect the impacts on roadway users (19).
Hence the resulting maintenance plan is rarely the best conceivable.  The combined costs of highway
maintenance and traffic operations must be considered for proper maintenance planning.  In
particular when major rehabilitation is undertaken the influence on existing traffic patterns is fairly
significant.

Various maintenance alternatives may be treated as possible projects that recover the network
performance to different levels.  Then the traffic assignment model may be used to estimate the
aggregate utilization of the roadway system.  Consequently the mutual influences between the user
and the facility can be properly taken into account. For example, the actual deterioration would
depend on route selection by drivers, which in turn affects maintenance needs.

HOV Lanes and IVHS Applications

The proposed MPNDP can be applied to evaluate various traffic improvement plans.  For example
it can be used for determining the suitable stages for introducing high-occupancy-vehicle (HOV)
lanes in different locations. With small additional efforts the proposed methodology may also be
used to plan advanced transportation systems, for example, intelligent vehicle-highway systems
(IVHSs).
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A critical issue in these applications is assessment of the traffic pattern changes owing to HOV lanes
or various IVHS technologies. In particular only a fraction of conventional users and facilities will
be affected. Special traffic assignment models are thus needed to deal with vehicles with various
occupancies or equipment.

With such information proper samples for ANN training can be generated according to the plans
under consideration. Then the MPNDP for implementing HOV lanes or IVHS technologies within
a certain horizon can be formulated and solved by the proposed BB method.
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CONCLUSIONS

Selecting the optimal project combination and implementation timing is very important for
transportation systems. This problem tends to be fairly difficult since complex project interrelations
often exist. The main drawbacks of most existing methods are long computation times and neglect
of conditions in the intermediate period. The latter may lead to inappropriate solutions. A model for
multiperiod transportation network priority programming was developed in the study described here.
This model has the desirable features of simultaneously determining the best combination of projects
and schedules.  The proposed model is more realistic than others since the improvements are
considered for the different demands and corresponding user behaviors in each time period
throughout the planning horizon.

To solve the MPNDP a BB procedure is specifically designed.  The ANN approach is adapted to
compute the resulting user travel times, taking into consideration the effects of project selection,
scheduling, and different demands over time.  The overall solution method can evaluate possible
solutions very cost-effectively and can screen out many inferior solutions to save computational ef-
forts.  The numerical examples show that only a small fraction of possible solutions must be
evaluated and the proposed BB method seems to be especially fast for budget levels of between 80
and 100 percent of total project costs.

The MPNDP model may be considered for many other network-related problems in which
interrelated projects must be scheduled.

Several conceivable extensions of the proposed methodology are worth pursuing, for example,
highway maintenance planning, suitable stages for HOV lanes in different locations, and the
transition timing of various IVHS technologies.
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